Math 210B Lecture 3 Notes

Daniel Raban

January 11, 2019

1 Finite Fields and Cyclotomic Fields

1.1 Finite fields

Proposition 1.1. Let F be a field and $n \geq 1$. Let $\mu_{n}(F)$ be the n-th roots of unity in F. Then $\mu_{n}(F)$ is cyclic of order dividing n.
Proof. Let m be the exponent of $\mu_{n}(F)$. Then $x^{m}-1=0$ for all $x \in \mu_{n}(F)$. So $\left|\mu_{n}(F)\right| \leq$ m. Then $\left|\mu_{n}(F)\right|=m$.

Lemma 1.1. Let F be a finite field. Then $|F|$ is a power of $\operatorname{char}(F)$.
Proof. Let $p=\operatorname{char}(F)$. Then F is a vector space over \mathbb{F}_{p}. Then $|F|=p^{\left[F: \mathbb{F}_{p}\right]}$.
Corollary 1.1. If $|F|=p^{n}$, then F^{\times}is cyclic with $F^{\times}=\mu_{p^{n}-1}(F)$.
Corollary 1.2. $(\mathbb{Z} / p \mathbb{Z})^{\times} \cong \mathbb{Z} /(p-1) \mathbb{Z}$.
Lemma 1.2. Let $\operatorname{char}(F)=p$ and $\alpha, \beta \in$. Then $(\alpha+\beta)^{p^{k}}=\alpha^{p^{k}}+\beta^{p^{k}}$.
Proof. This follows from the Binomial theorem.
Theorem 1.1. Let $n \geq 1$. Then there exists a unique extension $\mathbb{F}_{p^{n}}$ of \mathbb{F}_{p} of degree n up to isomorphism. If E / \mathbb{F}_{p} is a finite extension of degree a multiple of n, then E contains a unique subfield isomorphic to $\mathbb{F}_{p^{n}}$. Moreover, $\mathbb{F}_{p^{n}} \subseteq \mathbb{F}_{p}^{m} \Longleftrightarrow n \mid m$.
Proof. Let $\mathbb{F}_{p^{n}}$ be the splitting field of $x^{p^{n}}-x$ over \mathbb{F}_{p}. Let $F=\left\{\alpha \in \mathbb{F}_{p^{n}} L \alpha^{p^{n}}=\alpha\right\}$. Note that F is closed under addition by the lemma and is closed under multiplication and taking inverses of nonzero elements. So F is a field. In fact, F is a splitting field of the polynomial, so $F=\mathbb{F}_{p^{n}}$.

We know that $\left|\mathbb{F}_{p^{n}}\right| \leq p^{n}$ because the polynomial $x^{p^{n}}-x$ has at most p^{n} roots; we want equality. Let $a \in \mathbb{F}_{p^{n}}^{\times}$. Consider the polynomial $g(x)=\left(x^{p^{n}}-x\right) /(x-a)$. Then $g(x)=\sum_{i=1}^{p^{n}-1} a^{i-1} x^{p^{n}-i}$. Then

$$
g(a)=\sum_{i=1}^{p^{n}-1} a^{p^{n}-1}=\left(p^{n}-1\right) a^{p^{n-1}}=(0-1) 1=-1 \neq 0 .
$$

So $x^{p^{n}}-x$ has p^{n} distinct roots, giving us $\left[\mathbb{F}_{p^{n}}: \mathbb{F}_{p}\right]=n$.
Let E have degree m, where $n \mid m$. Then $E \cong \mathbb{F}_{p^{m}}$, so $E^{\times}=\mu_{p^{m}-1}(E)$. Since $\mu_{p^{n}-1}(E) \subseteq \mu_{p^{m}-1}(E)$, we have $F \subseteq E$ with $F \cong \mathbb{F}_{p^{n}}$.

Example 1.1. $\left[\mathbb{F}_{9}: \mathbb{F}_{3}\right]=2$. We can compute that $x^{2}+1, x^{2}+x-1$, and $x^{2}-x-1$ are the quadratic irreducible polynomials over $\mathbb{F}_{3} . \mathbb{F}_{9}$ is the splitting field of each. We get

$$
x^{9}-x=\left(x^{2}+1\right)\left(x^{2}+x-1\right)\left(x^{2}-x-1\right) x(x+1)(x-1) .
$$

Proposition 1.2. Let q be a power of p. Let $m \geq 1$, and let ζ_{m} be a primitive m-th root of unity in an extension of \mathbb{F}_{q}. Then $\left[\mathbb{F}_{q}\left(\zeta_{m}\right): \mathbb{F}_{q}\right]$ equals the order of q in $(\mathbb{Z} / m \mathbb{Z})^{\times}$.

Proof.

$$
\begin{aligned}
\ell=\left[\mathbb{F}_{q}\left(\zeta_{m}\right): \mathbb{F}_{q}\right] & \Longleftrightarrow \mathbb{F}_{q}\left(\zeta_{m}\right)=\mathbb{F}_{q^{\ell}} \\
& \Longleftrightarrow m \mid q^{\ell}-1 \text { and } m \nmid q^{j-1} \text { for all } j<\ell \\
& \Longleftrightarrow q \text { has order } \ell \text { in }(\mathbb{Z} / m \mathbb{Z})^{\times} .
\end{aligned}
$$

Proposition 1.3. Let $m \geq 1$ and $m=p_{1}^{r_{1}} \cdots p_{k}^{r_{k}}$, where the p_{i} are distinct primes. THen $(\mathbb{Z} / m \mathbb{Z})^{\times} \cong\left(\mathbb{Z} / p_{1}^{r_{1}} \mathbb{Z}\right)^{\times} \times \cdots \times\left(\mathbb{Z} / p_{k}^{r_{k}} \mathbb{Z}\right) \times$, and

$$
\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times} \cong \begin{cases}\mathbb{Z} / p^{r-1} \mathbb{Z} \times \mathbb{Z} /(p-1) \mathbb{Z} & p \text { odd } \\ \mathbb{Z} / 2^{r-2} \mathbb{Z} \times \mathbb{Z} / 2 \mathbb{Z} & p=2, r \geq 2\end{cases}
$$

Proof. The $\operatorname{map}\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times} \rightarrow(\mathbb{Z} / p \mathbb{Z})^{\times}$has kernel

$$
\frac{1+p \mathbb{Z}}{1+p^{r} \mathbb{Z}} \subseteq\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}
$$

If p is odd,

$$
\left(1+p^{k}\right)^{p}=1+p^{k+1}+\cdots+\left(p^{k}\right)^{p}
$$

Then $k p>k+1 \Longleftrightarrow k(p-1)>1 \Longleftrightarrow k \geq 2$ or $p \geq 3$. So if p is odd, then $\left(1+p^{k}\right)^{p} \cong 1+p^{k+1}(\bmod p)^{k+2}$. This argument gives us that $1+p$ has order p^{r-1} in $\left(\mathbb{Z} / p^{r} \mathbb{Z}\right)^{\times}$.

For $p=2$, look at

$$
\frac{1+4 \mathbb{Z}}{1+2^{r} \mathbb{Z}}
$$

Then $(1+4)^{2^{i}} \cong 1+2^{i+2}(\bmod 2)^{i+3}$. So $1+4$ has order 2^{r-2}. This gives us that $\mathbb{Z} / 2^{r} \mathbb{Z}=\langle-1\rangle+(1+4 \mathbb{Z}) /\left(1+2^{r} \mathbb{Z}\right) \cong \mathbb{Z} / 2 \mathbb{Z} \times \mathbb{Z} / 2^{r-2} \mathbb{Z}$.

1.2 Cyclotomic fields and polynomials

Let ζ_{n} be a primitive n-th root of 1 in an extension of $\mathbb{Q}\left(\right.$ e.g. $\left.\zeta_{n}=2^{\pi i / n} \in \mathbb{C}\right)$ such that $\zeta_{n}^{n / m}=\zeta_{m}$ for all $m \mid n$.

Definition 1.1. $\mathbb{Q}\left(\zeta_{n}\right)$ is the n-th cyclotomic field over \mathbb{Q}.
Remark 1.1. $\mathbb{Q}\left(\zeta_{n}\right)=\mathbb{Q}\left(\mu_{n}\right)$, where μ_{n} is the set of n-th roots of unity in \mathbb{C}.
Definition 1.2. The n-th cyclotomic polynomial Φ_{n} is the unique monic polynomial in $\mathbb{Q}[x]$ with roots the primitive n-th roots of 1 .

Note that

$$
\begin{gathered}
\Phi_{n}=\prod_{\substack{i=1 \\
(i, n)=1}}^{n}\left(x-\zeta_{n}^{i}\right), \\
x^{n}-1=\prod_{\substack{d \mid n \\
d \geq 1}} \Phi_{d} .
\end{gathered}
$$

So $\Phi_{n} \in \mathbb{Q}[x]$ by induction. The degree of Φ_{n} is $\varphi(n)=|\{1 \leq i \leq n:(i, n)=1\}|$.

