Math 210B Lecture 3 Notes

Daniel Raban

January 11, 2019

1 Finite Fields and Cyclotomic Fields

1.1 Finite fields

Proposition 1.1. Let F be a field and $n \ge 1$. Let $\mu_n(F)$ be the n-th roots of unity in F. Then $\mu_n(F)$ is cyclic of order dividing n.

Proof. Let m be the exponent of $\mu_n(F)$. Then $x^m - 1 = 0$ for all $x \in \mu_n(F)$. So $|\mu_n(F)| \le m$. Then $|\mu_n(F)| = m$.

Lemma 1.1. Let F be a finite field. Then |F| is a power of char(F).

Proof. Let $p = \operatorname{char}(F)$. Then F is a vector space over \mathbb{F}_p . Then $|F| = p^{[F:\mathbb{F}_p]}$.

Corollary 1.1. If $|F| = p^n$, then F^{\times} is cyclic with $F^{\times} = \mu_{p^n-1}(F)$.

Corollary 1.2. $(\mathbb{Z}/p\mathbb{Z})^{\times} \cong \mathbb{Z}/(p-1)\mathbb{Z}$.

Lemma 1.2. Let char(F) = p and $\alpha, \beta \in$. Then $(\alpha + \beta)^{p^k} = \alpha^{p^k} + \beta^{p^k}$.

Proof. This follows from the Binomial theorem.

Theorem 1.1. Let $n \ge 1$. Then there exists a unique extension \mathbb{F}_{p^n} of \mathbb{F}_p of degree n up to isomorphism. If E/\mathbb{F}_p is a finite extension of degree a multiple of n, then E contains a unique subfield isomorphic to \mathbb{F}_{p^n} . Moreover, $\mathbb{F}_{p^n} \subseteq \mathbb{F}_p^m \iff n \mid m$.

Proof. Let \mathbb{F}_{p^n} be the splitting field of $x^{p^n} - x$ over \mathbb{F}_p . Let $F = \{\alpha \in \mathbb{F}_{p^n} L \alpha^{p^n} = \alpha\}$. Note that F is closed under addition by the lemma and is closed under multiplication and taking inverses of nonzero elements. So F is a field. In fact, F is a splitting field of the polynomial, so $F = \mathbb{F}_{p^n}$.

We know that $|\mathbb{F}_{p^n}| \leq p^n$ because the polynomial $x^{p^n} - x$ has at most p^n roots; we want equality. Let $a \in \mathbb{F}_{p^n}^{\times}$. Consider the polynomial $g(x) = (x^{p^n} - x)/(x - a)$. Then $g(x) = \sum_{i=1}^{p^n-1} a^{i-1} x^{p^n-i}$. Then

$$g(a) = \sum_{i=1}^{p^n - 1} a^{p^n - 1} = (p^n - 1)a^{p^{n-1}} = (0 - 1)1 = -1 \neq 0.$$

So $x^{p^n} - x$ has p^n distinct roots, giving us $[\mathbb{F}_{p^n} : \mathbb{F}_p] = n$.

Let *E* have degree *m*, where $n \mid m$. Then $E \cong \mathbb{F}_{p^m}$, so $E^{\times} = \mu_{p^m-1}(E)$. Since $\mu_{p^m-1}(E) \subseteq \mu_{p^m-1}(E)$, we have $F \subseteq E$ with $F \cong \mathbb{F}_{p^n}$.

Example 1.1. $[\mathbb{F}_9 : \mathbb{F}_3] = 2$. We can compute that $x^2 + 1$, $x^2 + x - 1$, and $x^2 - x - 1$ are the quadratic irreducible polynomials over \mathbb{F}_3 . \mathbb{F}_9 is the splitting field of each. We get

$$x^{9} - x = (x^{2} + 1)(x^{2} + x - 1)(x^{2} - x - 1)x(x + 1)(x - 1).$$

Proposition 1.2. Let q be a power of p. Let $m \ge 1$, and let ζ_m be a primitive m-th root of unity in an extension of \mathbb{F}_q . Then $[\mathbb{F}_q(\zeta_m) : \mathbb{F}_q]$ equals the order of q in $(\mathbb{Z}/m\mathbb{Z})^{\times}$.

Proof.

$$\ell = [\mathbb{F}_q(\zeta_m) : \mathbb{F}_q] \iff \mathbb{F}_q(\zeta_m) = \mathbb{F}_{q^\ell}$$
$$\iff m \mid q^\ell - 1 \text{ and } m \nmid q^{j-1} \text{ for all } j < \ell$$
$$\iff q \text{ has order } \ell \text{ in } (\mathbb{Z}/m\mathbb{Z})^{\times}.$$

Proposition 1.3. Let $m \ge 1$ and $m = p_1^{r_1} \cdots p_k^{r_k}$, where the p_i are distinct primes. Then $(\mathbb{Z}/m\mathbb{Z})^{\times} \cong (\mathbb{Z}/p_1^{r_1}\mathbb{Z})^{\times} \times \cdots \times (\mathbb{Z}/p_k^{r_k}\mathbb{Z})^{\times}$, and

$$(\mathbb{Z}/p^{r}\mathbb{Z})^{\times} \cong \begin{cases} \mathbb{Z}/p^{r-1}\mathbb{Z} \times \mathbb{Z}/(p-1)\mathbb{Z} & p \text{ odd} \\ \mathbb{Z}/2^{r-2}\mathbb{Z} \times \mathbb{Z}/2\mathbb{Z} & p = 2, r \ge 2. \end{cases}$$

Proof. The map $(\mathbb{Z}/p^r\mathbb{Z})^{\times} \to (\mathbb{Z}/p\mathbb{Z})^{\times}$ has kernel

$$\frac{1+p\mathbb{Z}}{1+p^r\mathbb{Z}} \subseteq (\mathbb{Z}/p^r\mathbb{Z})^{\times}$$

If p is odd,

$$(1+p^k)^p = 1+p^{k+1}+\dots+(p^k)^p.$$

Then $kp > k + 1 \iff k(p-1) > 1 \iff k \ge 2$ or $p \ge 3$. So if p is odd, then $(1 + p^k)^p \cong 1 + p^{k+1} \pmod{p^{k+2}}$. This argument gives us that 1 + p has order p^{r-1} in $(\mathbb{Z}/p^r\mathbb{Z})^{\times}$.

For p = 2, look at

$$\frac{1+4\mathbb{Z}}{1+2^r\mathbb{Z}}$$

Then $(1+4)^{2^i} \cong 1+2^{i+2} \pmod{2^{i+3}}$. So 1+4 has order 2^{r-2} . This gives us that $\mathbb{Z}/2^r\mathbb{Z} = \langle -1 \rangle + (1+4\mathbb{Z})/(1+2^r\mathbb{Z}) \cong \mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2^{r-2}\mathbb{Z}$.

1.2 Cyclotomic fields and polynomials

Let ζ_n be a primitive *n*-th root of 1 in an extension of \mathbb{Q} (e.g. $\zeta_n = 2^{\pi i/n} \in \mathbb{C}$) such that $\zeta_n^{n/m} = \zeta_m$ for all $m \mid n$.

Definition 1.1. $\mathbb{Q}(\zeta_n)$ is the *n*-th cyclotomic field over \mathbb{Q} .

Remark 1.1. $\mathbb{Q}(\zeta_n) = \mathbb{Q}(\mu_n)$, where μ_n is the set of *n*-th roots of unity in \mathbb{C} .

Definition 1.2. The *n*-th cyclotomic polynomial Φ_n is the unique monic polynomial in $\mathbb{Q}[x]$ with roots the primitive *n*-th roots of 1.

Note that

$$\Phi_n = \prod_{\substack{i=1\\(i,n)=1}}^n (x - \zeta_n^i),$$
$$x^n - 1 = \prod_{\substack{d|n\\d>1}} \Phi_d.$$

So $\Phi_n \in \mathbb{Q}[x]$ by induction. The degree of Φ_n is $\varphi(n) = |\{1 \le i \le n : (i, n) = 1\}|.$